Extensions 1→N→G→Q→1 with N=C22xC10 and Q=C4

Direct product G=NxQ with N=C22xC10 and Q=C4
dρLabelID
C23xC20160C2^3xC20160,228

Semidirect products G=N:Q with N=C22xC10 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C22xC10):1C4 = C5xC23:C4φ: C4/C1C4 ⊆ Aut C22xC10404(C2^2xC10):1C4160,49
(C22xC10):2C4 = C23:Dic5φ: C4/C1C4 ⊆ Aut C22xC10404(C2^2xC10):2C4160,41
(C22xC10):3C4 = C23:F5φ: C4/C1C4 ⊆ Aut C22xC10404(C2^2xC10):3C4160,86
(C22xC10):4C4 = C2xC22:F5φ: C4/C1C4 ⊆ Aut C22xC1040(C2^2xC10):4C4160,212
(C22xC10):5C4 = C23xF5φ: C4/C1C4 ⊆ Aut C22xC1040(C2^2xC10):5C4160,236
(C22xC10):6C4 = C10xC22:C4φ: C4/C2C2 ⊆ Aut C22xC1080(C2^2xC10):6C4160,176
(C22xC10):7C4 = C2xC23.D5φ: C4/C2C2 ⊆ Aut C22xC1080(C2^2xC10):7C4160,173
(C22xC10):8C4 = C23xDic5φ: C4/C2C2 ⊆ Aut C22xC10160(C2^2xC10):8C4160,226

Non-split extensions G=N.Q with N=C22xC10 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C22xC10).1C4 = C5xC4.D4φ: C4/C1C4 ⊆ Aut C22xC10404(C2^2xC10).1C4160,50
(C22xC10).2C4 = C20.D4φ: C4/C1C4 ⊆ Aut C22xC10404(C2^2xC10).2C4160,40
(C22xC10).3C4 = C23.2F5φ: C4/C1C4 ⊆ Aut C22xC1080(C2^2xC10).3C4160,87
(C22xC10).4C4 = C23.F5φ: C4/C1C4 ⊆ Aut C22xC10404(C2^2xC10).4C4160,88
(C22xC10).5C4 = C22xC5:C8φ: C4/C1C4 ⊆ Aut C22xC10160(C2^2xC10).5C4160,210
(C22xC10).6C4 = C2xC22.F5φ: C4/C1C4 ⊆ Aut C22xC1080(C2^2xC10).6C4160,211
(C22xC10).7C4 = C5xC22:C8φ: C4/C2C2 ⊆ Aut C22xC1080(C2^2xC10).7C4160,48
(C22xC10).8C4 = C10xM4(2)φ: C4/C2C2 ⊆ Aut C22xC1080(C2^2xC10).8C4160,191
(C22xC10).9C4 = C20.55D4φ: C4/C2C2 ⊆ Aut C22xC1080(C2^2xC10).9C4160,37
(C22xC10).10C4 = C22xC5:2C8φ: C4/C2C2 ⊆ Aut C22xC10160(C2^2xC10).10C4160,141
(C22xC10).11C4 = C2xC4.Dic5φ: C4/C2C2 ⊆ Aut C22xC1080(C2^2xC10).11C4160,142

׿
x
:
Z
F
o
wr
Q
<